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Abstract

We motivate and detail the development of a universal algorithm for online convex optimization.
Specifically, we develop the theory to explain how one could develop such an algorithm from first
principles and prior work, and follow up with full descriptions and derivations of regret bounds
for the meta algorithm.
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1. Introduction

Online convex optimization (OCO) has become an essential problem in machine learning due to
its overall application across the field, from optimizing traffic to solving gradient descent prob-
lems. The field has produced a diverse array of algorithms to leverage various degrees of prior
information about a given learning scenario, thus the challenge for practitioners is how to select
the algorithm that makes the most use of their particular problem.

1.1. Bound Knowledge

In all generality, online convex optimization has been solved by many algorithms (Shalev-Shwartz
et al. (2007), Tieleman and Hinton (2012), Zeiler (2012)) for an optimal regret per round of
O(\V/T). However, the literature has focused on stricter convex geometries, most notably strong-
convexity and exponential-concavity, in an effort to achieve even faster vanishing regret O(log T').
In the case of strongly-convex and exponentially-concave loss functions, most regret-minimizing
algorithms (Hazan et al. (2007),Duchi et al. (2011),Shalev-Shwartz et al. (2007)) require prior
knowledge about the specific modulus of the convex geometry. The need for these additional
assumptions on the geometry can often limit its use in practice as most loss functions are not nec-
essarily known.
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1.2. Adapt-ML-Prod

In the domain of online prediction with expert advice, a learner iteratively makes decisions based on
the guidance of multiple experts, adjusting strategies across several rounds to minimize cumulative
loss. This setting usually involves assigning weights to expert opinions, where each weight sum
reflects the learner’s strategy in balancing between differing expert losses. The primary goal is to
control cumulative regret relative to the best-performing expert, with standard regret bounds typi-
cally at /K log(T"). Recent advancements have focused on refining these bounds by incorporating
loss variance, leading to second-order bounds that promise more nuanced regret minimization un-
der certain conditions. Notably, the development of the Adapt-ML-Prod algorithm by Gaillard
et al. (2014) introduced a way to account for the existing regret of each expert to minimize the
added regret of the algorithm to a near constant O(loglog T") term.

2. Motivation

In this section we seek to develop an algorithm by motivating the design choices and explaining
some simplifications. Firstly, being a meta-algorithm means we have to make a selection to known
algorithms to run and give us a prediction, i.e., functioning as experts in the usual online sense.
This forces us to estimate the moduli of strong convexity and exp —concavity (see Subsection
2.1) for each expert we initialize for strongly convex functions (resp. exp —concave functions). To
estimate these hyperparameters, we see that discretizing yields desired properties like uniformity in
experts, which can be generalized to the idea that “discretization gives uniformity” (in some sense)
which we detail in Subsection 2.2. Finally, the meta-algorithm uses second-order bounds which
linearized losses motivate with their relation to strong convexity and exp —concavity as explained
in Subsection 2.3.

2.1. Estimating Hyperparameters

In theory, the modulus of a strongly convex function f, i.e., the largest « for f to be a—strongly
convex may take any value in R which cannot be estimated well. If we were to initialize experts
for each real (resp. rational) number even in a bounded interval, we would have an uncountable
number (resp. countably infinite). However, if we could find a bounded interval to represent the
potential space of moduli, then our solution naturally simplifies. Known algorithms like projected
stochastic gradient descent (PSGD, see (Mohri, p. 9) for an example) enjoys a regret bound with
constant C,

C
RT < E(l +IOgT)a

for f; a—strongly convex. If it happens « ~ 1/T, then the regret bound would become

Rr ST(1+1ogT),
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where < denotes being less or equal in order of growth. This is impractical because general bounds
are usually Q(log T') anyway (Mohri, p. 29) when they come from mirror descent. Hence, with
increasing average regret, these bounds become uninformative and we can effectively exclude o <
1/T from our considerations.

On the other end, if a given function f is & > 1 strongly convex, then it it also 1—strongly convex
because the latter quadratic still fits between the function and its tangent plane. Alternatively, by
definition of strong-convexity,

() + (5w} = w) + Sllw— '[P < fw) + (37 (w), w0’ =) + 5w — |2 < Fu)

as f is a—strongly convex. Hence, we don’t consider o« > 1 for strong convexity either and our
new interval to consider is « € [1/T, 1] to cover all useful cases.

2.2. Discretization and Uniformity

Now that we have the bounded interval [0, 7] to work with, we need to get a better estimation on
the interior. Since we seek to have this be uniform in experts, we want a condition which gives
us uniformity. A general technique for getting some kind of uniform result over large sets is to
discretize them because by separating the set into finite components and a small error term, the
overall nature can be controlled as finite sets naturally give uniform results (e.g., the maximum of a
real function over all points always exists). For example, to get a uniform bound over all p € (0, 7]
for SVM (see theorem 5.9 in Mohri et al. (2018)), the breakdown looks like

(0,7] = (r/2,7]U---U(r/2",7/2" 1] U length e

if n ~ logy(2¢/r), and the LI denotes the disjoint union. Another example is the doubling trick,
where we get uniformity over the randomness of the horizon 7T' (a random variable in full generality)
by discretizing the positive reals with I, = [2¥, 251]. Tt signals two conditions that discretization
needs to meet to yield uniformity

1. Each of the finite parts is easily controllable,
2. The remainder can be made small using other methods.

Condition (1) in the doubling trick is setting the learning rate to the worst-case 7 for each I,
allowing a regret bound to be uniform from [0, 2"], where 7" > n is the only problem. For doubling
trick we can get an intuition that the remainder term is controllable (condition 2) because of the
exponential growth. If we try and consider ¢(x) = x® (needs to be monotonic for doubling trick
to apply) and get uniformity by assuming 7" > ¢(n), we can use I, = [¢(k), ¢(k + 1)] and get

P 2 2 ~ 2 ’

n
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This bound is uninformative for o < 2 because it achieves constant (or worse) average regret, and
only in the limit o — +o0, do we achieve the expected /7 bound for regret. Exponentials achieve
this bound by default, so it makes sense to split our interval

yra —— {12 2
’ approx. by T T
where k = [log, T'| to ensure the closest approximation of the interval. Later this will be defined
as Pstr, Pexp in the algorithm, but now it is important to see each one has size O(log, T').

2.3. Linearized Losses

Looking at equivalent definitions of strong convexity and exp —concavity (these are for bounded
gradients and domains), we can say

A strongly comvex f <= f(y) > f(a) + (Vf(a),y — ) + Sy~ all m

o~ expeoncave f = f(y) > (&) + (Vf()y—2) + 5 (Vf()y -2 @)
where 8 = % min {ﬁ, a} from lemma 3.5 in Zhang et al. (2021). Both of these involve second-
order bounds which we know show up in the subgradient expansion term in almost every online
convex optimization regret proof (say in Mohri). Based on Subsection 1.2, we would like to get
a time-dependent loss function to compare our guess with the expert’s which can make use of
the second-order terms which appear in strongly convex or exponentially concave functions. A

candidate loss function could be

ft(ﬂf) = <Vft(l't), Xr — :Et>

which is clearly comparable for exp —concavity, and by Cauchy-Schwarz is reasonable for com-
parison with strongly convex functions. This is called the linearized loss and the initial intuition
can be thought that if f; has a subgradient, then with the only algorithm we know we should expect
x = x; — nV fi(x;) for some small > 0, meaning

b(x) = (V fi(xe), —nV fe(zr)) = —nll fe(z)] <O,

and forward gradient steps increase the loss. This can’t cover all directions but in the half plane
(y, V fr(z¢)) <0, x = x4 + y does have negative loss and otherwise incurs nonnegative loss. The
linearized loss is useful because if we decompose the regret of the meta algorithm by adding the
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term with u;-the guess of any expert

T T T
RT:th(xt)—th(ut)—th(ut)—;réig(lth(x), (3)
t=1 t=1 t=1

N

meta part expert regret
T T T
Z(Vft(llft) Ty — ug) — *Hl‘t—UtH + <th ut) lgél)ngt(iUO

1
N

A T T
(€e(ze) = b)) — 5 llwe = w|* + <Z Je(we) = ;Yg(lz:ft(fﬂ)) :
t=1

t=1 t=1

using the definition of strong convexity on f; to arrive at the inequality. Similarly, for o —
exp —concavity, one has

T

T
T < Z (be(zy) — Ly(uy)) — *Wt(xt) — Ly (wy ’ + (Z fi(ug) ;%%Zf:&(@) ;
=1 =1

showing why having second-order bounds would be nice in both cases. The issue now is these
losses are not adapted to [0, 1] valued, but if we assume ||V f¢||2 < G, ||z||2 < D holding over X,
then by Cauchy-Schwarz we know the loss of the i — th expert, £; is bounded like

(V fize), 2} — 20)] < GD = (i +GD € [0,2GD] =
(Vfi(zy), 2t —2) +GD  (Vfi(zy), ol — ) 1

b= 29GD - 2GD t3 “)

can be taken as the definition of the linearized loss for expert ¢ on the {—th round.

3. The Universal Algorithm

Now that we have a linearized loss to compare the meta-algorithms guess with each experts guess
and a finite set of possible moduli for strong convexity/exponential concavity all that is left is to
come up with a strategy for making a guess based on experts. We can let the set of experts be
denoted £ and for each expert 4, assign it a weight 0 < p} < 1 such that they sum to 1 and let

I
Ty = Zpéxjﬁa
i=1
and similarly

€] €] €] €]

i V fi(we), o +GD
Zt = ;ptf Zpt < t t 2tGD t> ) <Vft xt Zpt$t Zpt$t>

= (Vfi(z), zs — ) + % _

1
5 5)
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using the definition of ¢} from 4, linearity of (V f;(x¢), -}, the definition of 4, and Y, p} = 1.

3.1. Algorithmic Details

The important part of the meta algorithm is the ability to keep track of the best expert as it runs. We
use Algorithm 2 (Adapt-ML-prod seen in 1.2) from Gaillard et al. (2014) because of the control on
second-order terms it features. Specifically, the learning rate and weight updates are as follows
. ni_wi_
P = \g\t 1z‘t 12' ©
D it MWy

; ! log |€]
Nj_1 = min< -, 1 - , t>1
2 L+ Zs:l(zs - 62)2

Mt—1
wy_q = [wi_z +wi_om;_o(br—1 — 4—1)} i ) wy = E

In Gaillard et al. (2014), the authors don’t seem to give clear intuition to the choices for these
learning rates and we treat their optimality as a black box. For the full algorithm, see Algorithm 1
below.
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Algorithm 1: The Universal Algorithm

Data: Ay, Acap, Acon algorithm sets, Py, Peyp parameter sets
E

for (A, )\) € A X Pgtr do

Create expert F(A, \);

Append € + EU E(A,\);

end

or (A, a) € Aczp X Pegp do

Create expert F(A, a);

Append £ + EU E(A, a);

by

end

for A € A, do

Create expert F/(A);

Append € < EU E(A);

end

fort ={1,...,7T} do

for £ € £ do
Calculate pé using (6) for Et;
Receive z¢ from E* ;

end

Calculate z; = Zl | Pixt

for £ € £ do
| Send loss data f(-) to expert E
end

end

Observe loss f:(-) ; #full information case

The algorithm is simple because the weight updates and their corresponding optimality among
experts is doing the real work. In fact, the importance of the adapt-ml-prod bounds being second-
order cannot be overstated as we will see from the regret bounds in 3.2.

3.2. Bounds and Proofs

Theorem 1 Let f; all be \—strongly convex with A € [1/T, 1] and assume ||V fi|2 < G, ||z[]2 <
D. Then for A< A< 2\ with ) € Psir has the regret of Algorithm 1 is bounded by

€Astr log |€|

loglogT'
- e, Fria N +0 (REED ).

R 1
Ry < min Rp(A,\) +2I'GD (2 + ) +
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Here I' comes from Corollary 4 in Gaillard et al. (2014) as
&
I' = 3log |€| + log <1 + |2|(1 + log(T + 1))> = O(loglogT)
e

is O(loglog T') because |E| = O(log T) by construction.

Proof We start by computing the regret from the linearized losses and the bound from Corollary 4
in Gaillard et al. (2014), i.e,

T T T
1) (= t)2 2T (7)
2 (b \/log\é’\ ; P

t=1
By the definition of £%, ; in (4),(5) we can note

-t = 1 <<Vft($t),$f§ — ) 4 1) _ <Vft($2tggt — )

2GD 2

2

where the order z, x! is reversed to account for the —sign. Multiplying both sides of the inequality
with 2G D (and bringing inside the square root) allows us to write the bound (7) as

T T
E Vft LL’t .’1?%> < — 4G2D2 + E <Vft($t), Tt — $§>2 + 4PGD, (8)
t=1 V1og €] t=1

and using the fact v/a + b < y/a + v/b (for a,b > 0, and it can be shown easily by squaring both
sides) we get

1 T T N
m) " g\ &V

In order to remove the square root we can treat this term as a multiplication i.e.,

T
Z<vft(xt)a$t — !y <2I'GD (2 +
t=1

T o T
2 D (Vfelwe),a —aj)? = i % Y (Vilwr),a — i),
t=1

VieglE| \ = ’ | Mog €]

the term G2 /\ gets multiplied and divided inside so we can make eventual use of strong convexity.
This is natural because the only term strong convexity will help us with involves ||z, , SO we
need to apply a A there sometime. Now we can split these terms using arithmetic mean-geometric
mean (AM-GM) inequality as

G2 A & . 262
- - . _ at\2 < 2
Mog || G2 Zt1<vft(xt)’$t T < 21 1log |€] 2G2 Z Vi@, 2 — ),
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and moreover, an application of Cauchy-Schwarz on the latter term to say

T

T
i A i
s 2 (Vhilwe) e — a)* < 525> IV fulw)|Pllwe — i),
t=1

t=1

Finally, using the assumption ||V f;(x;)||?> < G?, we note

A - ' SN .
Yed S IV fiz) Pl — =) < Zg\lxt — zj|%,
t=1 t=1

and to summarize,

d . 1 r2G2 )
;(Vft(xt),a:t — ) <2I'GD (2 + m) N + Z llzs — ).
Now we can use strong convexity and bringing the last term to the LHS to argue
T . Ty .
th p) — fil@}) < tz; <<Vft(«’13t)733t —xy) = ; §H$t - w§HQ>

272
<2FGD<2+ L )—i— LG

log |€| 2Alog (€]

the desired bound. The critical term lies in the second order control and how it relates to strong
convexity, otherwise this would not be possible. The other portion of regret, i.e., the second term
from (3) can be bounded as

T
Z fi(ug) mlnz fi(x (A, )
t=1

as A < A and any expert algorithm E'(A, ;\) makes the correct assumption on the strong convexity
allowing it to enjoy the correct bounds. Since the algorithm was independent of this construction,
we can take the minimum over all algorithms A € Ay, to get our final result

FQ 2
Ry < min Rp(A,\) +20GD ¢

1
+ .
A€Astr ( \/log |€|> 2\ log [€]

Now we turn to the case of f; being o — exp-concave.



DISCRETIZATION GIVES UNIFORMITY

Theorem 2 Let f; all be o — exp —concave with o € [1/T,1] and assume ||V fi||2 < G, ||z]]2 <
D. Then for & < oo < & with & € Pegy has the regret of Algorithm 1 is bounded by

1 2
Rr < min Rp(A,4)+2TGD |2+ + :
T = Aeheny r(4,4) ( \/log|5\> 281og €|
loglog T
= min Rp(A4, )+O<Og0g>'
G-Aezp a

Here, § = mln{4GD,a} as in (2).

Proof We can approach this similarly to Theorem 1. From (2), we can take inspiration and modify
the step from Theorem 1 but multiply and divide by 8 # 0 to get

T T

r , r2 |
NG ;(Vft(xt),xt —zp)? = ToglEl 'B;Wft(xt),xt )2,

Next, using the same AM-GM inequality arrive at

T T
i ﬁ 2
510g|5’ Bt§1 V fi(xe), zp — xh)? _Qﬁlogm—i-glz Vfi(xe), 2 — 2h)?,

allowing us to combine all the terms from the meta-regret (first component of (3)) as

T
> fulwr) = fila) < Z < (V fele), o0 — f) Z (Vii(ze), = i>2>
t=1 t=1

P2
<orGD 2+

1
+ ;
log|5]> 26 log €|

our desired bound. The second regret split in (3) is handled identically because we did not use the
function structure except in A, Psir Which now become Az, Pesp. Hence,

FZ
Rr < min Rp(A,6)+2I'GD

1
; 2+ + ;
A€Acap < \/log |€> 2log |€|

but we need to argue why this is O (bgl%r‘v because now there is a S dependence. Firstly,
log|€],T € O(loglog T') via construction and Corollary 4 in Gaillard et al. (2014). Hence,

1

Viog €]
2 _0 (loglog T)?\ o loglog T
28Mlog |E] BloglogT ) B ’

10

2I'GD (2 + ) = O (loglogT),
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making the dominant term the second one. Note as § appears in the denominator and we are
looking for asymptotic behavior, the only way we can have an increasing bound is if 5 — 0, where
we can say 5 = a/2 eventually. Hence,

0 (loglogT) _ 0 <loglogT>
I5) «

because the factor of 2 means nothing for big-O notation. |

Finally, we need to consider the case where the f; are only convex. We can’t expect as good
performance here just by nature of a weaker assumption, and this is formalized in Theorem 3
below.

Theorem 3 Let f; all be convex and assume ||V fi||2 < G, ||z||2 < D. Then the regret of Algo-
rithm [ is bounded by

Ry < min Rp(A)+4TGD +

rD
A€Acon log €]
= min RT(A)—i—(’)(\/TloglogT).

EAcon

T
4G+ )|V fulz)|?
t=1

Proof If we use the same expansion in (8), we have

T T ‘ T ‘
D filw) =D fila) <D AV fule), e — ap)
t=1 t=1 t=1

T
r .
< ——— [4G2D? + > (V fi(wy), 2 — 2§)? + ATGD,
0og |€| P
r T
Cauchy-Schwarz} < 17|5! 4G2D? + Z | fe(ze)||?]| e — 222 + 4T GD.
08 t=1

Now, we use the crude bound ||z; — z¢||? < D? to get

T T D T
felze) =Y folzl) < ———, [4G2? + fe(x)||? +4TGD, 9)
; t(2e) ; t(x¢) NG ;H t(@e) |

which when combined with the same expert regret term in (3) yields

r'D
Ry < min Rp(A)+4TGD +

AEAcon A /]og |5|

T
4G+ |V ful=o)]1?,
=1

11
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and the asymptotics come from

AT'GD = O(loglogT')

D T D

——\ 4GP+ D _IVA@)IP < ——— VAG? + GPT,

V1og €] — log|&| ~——
~—— OWT)
O(loglogT)

and hence, we are done. [ |

4. Discussion

4.1. Novelty

The Universal Strategy for online Convex optimization (USC) is among the first algorithms that
minimize regret across strongly-convex, exp-concave and general convex functions. Its near-
assumption-free requirements for close-to-optimal performance makes it a leading candidate for
general use in the field. Nevertheless, the biggest strength of the USC algorithm is undoubtedly
that it works for any black-box OCO solver in each of the three geometries. This allows it to be
implemented alongside any existing and future methods, promoting more research into those areas.

4.2. Limitations

As alluded to above, although the USC algorithm no longer requires an assumption on the modulus
of the geometry, there are other assumptions that need to be made. Firstly, the algorithm is designed
for a fixed time horizon 7" in order to adequately span the required expert spaces set by P and
Peap- Due to these reliances at initialization, the fixed horizon cannot be avoided using traditional
methods such as the doubling trick.

Another potential limitation is the crude bound employed in the proof of Theorem 3, specifically
(9). By bounding each of the differences ||z; — || by the entire diameter of the set, any information
on the experts “learning” is cast aside. Specifically, these terms may help counter the norm gradient
terms also present, if those were to be large.

In addition to the fixed time horizon, the use of Adapt-ML-Prod for the meta-algorithm requires an
assumption that bounds the domain and gradients of the problem. However, it is worth noting that
the authors conclude that these assumptions could potentially be circumvented by implementing
different meta-algorithms, as long as the meta-algorithm has the second-order bounds.

5. Conclusion

The authors of the USC algorithm have introduced a compeling novel algorithm for OCO, which
leverages most of the field’s existing methods to solve for a best-of-all-worlds solution. Although

12
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it is constrained by a set of assumptions, most notably by the need for a preset time horizon, its
contributions to the field are significant and could lead to a whole new set of expert-agnostic OCO
algorithms.
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